

Sardin: speech-oriented text processing

Christina Tånnander1,2, Jens Edlund1
1 Speech, Music & Hearing, KTH Royal Institute of Technology, Sweden

2 MTM, Swedish Agency for Accessible Media

christina.tannander@mtm.se, edlund@speech.kth.se

Abstract

We present Sardin, a text processing system for Swedish TTS

production that has recently undergone significant refactoring

in preparation for public release and is soon released as free

and open software. Sardin is a text processing system with the

goal to prepare text for speech-centric science, such as prepar-

ing text for speech synthesis training, or for use in speech ap-

plications, for example as input of different levels and detail to

different TTS systems. The current version of Sardin handles

several input and output formats (EPUB, Daisy XML, generic

XML, text, IPA, SAMPA), and contains modules for chunking,

tokenisation, part-of-speech tagging, text normalisation, and

pronunciation and prosodic information.

Introduction

Sardin is a speech-oriented text processing system. It was

developed by the Swedish Agency for Accessible Media

(MTM) as part of its text-to-speech (TTS) synthesis pro-

duction system. The system targets long and information

rich real-world texts, such as university textbooks and

newspapers. It has been used in production and continu-

ously maintained since 2007. In 2020-21, the system un-

derwent major refactoring in preparation for an initial re-

lease as free open-source software through Språkbanken

Tal (Eng. appr. The speech bank), a national research in-

frastructure for speech-centric research.

A production TTS system contains steps that are nor-

mally omitted in descriptions of TTS pipelines. Notably,

there is the initial data ingestion, where the text to be read

is acquired from somewhere, and a post-processing stage

where presentation instructions and speech audio files

are packaged and exported. In addition to plain text, Sar-

din can read and write several standard publication for-

mats such as EPUB 3 (EPUB 3.2 Final Community

Group Specification, 2019) and Daisy 3 (Specifications

for the Digital Talking Book, 2005). This facilitates test-

ing on real-world materials and allows the system to be

used to process real-world data in preparation for train-

ing.

Traditionally, the TTS process chain is divided in two:

the first step transforms the text to be read aloud to sym-

bol sequences that are the input of the second step, which

generates a speech signal based on the symbol sequence.

The first step is traditionally known as the “front-end” in

the TTS literature, but other terms such as “linguistic

analysis” (Ebden & Sproat, 2014) are also used. This is

the domain of Sardin, and we use the term speech-ori-

ented text processing to highlight the fact that the process

deals with text with a speech-centric view, for example

looking to how it can be spoken or read aloud. We use

the term speech generation for the second step, which

can be achieved using a variety of techniques such as for-

mant synthesis, concatenative synthesis, statistical syn-

thesis and neural synthesis. Sardin can be configured to

produce symbol sequences that are suitable for virtually

any speech generation system.

TTS is increasingly becoming a standard part of our text

presentation arsenal. When the European Accessibility

Act (EEA) takes effect in June 2025 (EU, 2019a), the

strengthened requirements on accessibility are expected

to lead to an increase in TTS use by publishers. And alt-

hough speech-oriented text processing is a non-trivial

task, its reputation within the speech technology commu-

nity has historically received little attention (Ebden &

Sproat, 2014; Tran & Bui, 2021). Within the machine

learning community, speech and written language alike

are not research topics so much as hard tasks on which

to test machine learning algorithms. The science of

speech and writing are by-products in this context, and

speech-oriented text processing is limited to an interest

in so-called end-to-end TTS, where the idea is to “to ul-

timately replace the whole pipeline by a single neural

network predicting the audio signal corresponding to the

reading of a given text” (Perquin et al., 2020). In prac-

tice, current end-to-end systems move pronunciation

modelling, and potentially some linguistic modelling,

into the learned model (Watts et al., 2019), but the ma-

jority of the text processing required is not as much han-

dled by the models as it is ignored. Tan et al., 2021 state

that although “some TTS models claim fully end-to-end

synthesis”, “text normalisation is still needed to handle

raw text with any possible non-standard formats”. “Non-

standard”, here, refers in practice to any text that is not

already prepared for machine learning, which is any real-

world text. In the typical case, the machine learning lit-

erature deals with already preprocessed materials such as

LJ Speech (Ito & Johnson, 2017), both for training and

testing. Here, virtually all hallmarks and peculiarities of

written language are absent: LJ Speech contains 19

known, explicitly enumerated abbreviations and 19 in-

stances of non-ascii characters, and it is presented as a

collection of single sentences. As an example of the

somewhat artificial nature of such end-to-end pro-

cessing, Tihelka et al., 2021 tested several Tacotron im-

plementations on texts containing a small number of triv-

ial text phenomena, with a resulting failure to speak ap-

propriately in a majority of cases.

The text processing involves a number of more or less

complex process steps:

Data ingestion. The system reads (and unpacks in the

case of e.g. EPUB) the input. Often, this involves pre-

normalisation steps such as converting the text to UTF8

or normalising special tokens such as spaces and differ-

ent varieties of hyphen. The system then structures the

text in a series of processes that may involve parsing of

input formats such as HTML or XML, sentence segmen-

tation, and tokenisation.

mailto:christina.tannander@mtm.se

Text analyses. Next, a series of analyses take place.

These normally use information and resources that are

external to the text, such as sets of rules, dictionaries, or

language models. Typical process steps include the de-

tection of non-standard words (Sproat et al., 2001), that

is words or expressions that need some kind of translit-

eration from the original writing into the sequence of

words to be spoken. Typical examples include the expan-

sion of abbreviations or the rewriting of date expressions

and currencies.

Instruction. Next, the sequence of words to be spoken is

embellished with structured information on how it should

be spoken. This often involves converting the words into

a phonetic representation and may also include prosodic

phenomena (e.g. emphasis or speaking rate).

Generation. In the last step, the symbol sequence that is

the input to the speech generation is generated. This can

be done at different levels of representation, such as a

series of normalised sentences of the type that the

Tacotron expects as “raw” input, a series of grapheme

symbols, or a series of phonetic symbols. It can also in-

volve more complex generation, such as inserting infor-

mation into an original EPUB structure in the form of

SSML.

Although all these steps are found in TTS production,

system descriptions generally present one of the follow-

ing three scopes: (1) text normalisation descriptions from

sentence segmentation or word tokenisation, including

analysis, but commonly interrupted before pronunciation

instruction; (2) pronunciation-oriented descriptions (e.g.,

grapheme-to-phoneme conversion) residing in the in-

structive step, or (3) speech generation. The remaining

process steps, and the way in which these steps interact,

are rarely mentioned.

This paper introduces Sardin, a production system for

speech-oriented text processing that has recently been re-

factored and released under a free open-source license

(Apache 2.0). Sardin is designed to be both robust and

versatile. Its processing chain follows standard princi-

ples of text processing for TTS. The system utilises a

large number of language dependent information re-

sources, but its modular design makes it possible to swap

out processes such as part-of-speech tagging or graph-

eme-to-phoneme conversion (G2P). The system permits

detailed selection what information should be included

in the output (e.g., pronunciations for out-of-vocabulary

(OOV) words, abbreviations, law references, pause

placements and durations, and level of phonetic repre-

sentation) and what output format to use. Although its

main purpose is to generate input for different types of

speech generation, it can also be used to perform linguis-

tic analyses or to process texts to be used as manuscripts

for human speakers or as training material for neural

speech generation.

Historical overview of Sardin

Sardin was originally developed in 2006, as part of the

Swedish unit selection text-to-speech synthesis system

Filibuster (Ericsson et al., 2007; Sjölander et al., 2008;

Tånnander, 2018). Filibuster was a Swedish TTS de-

signed to handle complex texts, namely university

textbooks. It was also localised to Norwegian bokmål

(2009) and Danish (2012). The commercial TTS systems

at that time often had limitations to how many pronunci-

ations user lexicons could hold, and methods for control-

ling the voice were less elaborate, which necessitated the

development of an in-house TTS system. Since 2017,

MTM uses commercial voices for Swedish and English

in the production of synthetic university textbooks and

for newspapers synthesised on-the-fly in the users’ de-

vices. These voices have no limitations on user lexicons,

and SSML (W3C, 2010) can be used to insert pronunci-

ations, word substitutions, pauses, inter alia. Unsurpris-

ingly, most commercial TTS are not built for handling

large amounts of complex and subject-specific text, so

MTM still provides extra information to these systems,

mainly by inserting phonetic pronunciations in user lex-

icons or as SSML into the texts representation.

Sardin

System basics

Code base

Currently most of the code base is written in Perl. Most

of it is object-oriented and the development is test-

driven, which facilitates regression testing. This has re-

sulted in an extensive test battery for Swedish with more

than 3,500 tests that also act as part of the system’s doc-

umentation. The system is modular, and each process can

be replaced by essentially anything, including modules

written in other programming languages and external

plug-ins. This increases its usefulness for other lan-

guages, including languages unrelated to Swedish and

other Germanic languages, although there would be less

code re-use for languages with significantly different

writing systems, such as Japanese. Sardin was originally

developed for Swedish and has then been localised to

English, although on a smaller scale.

Information slots

Sardin has an extendible number of information slots at-

tached to each token and chunk. Currently implemented

token slots include orth (the original orthography of the

token), pos (part-of-speech and morphological infor-

mation), exprType (roughly corresponding to what in the

literature is referred to as semiotic classes), exp (the ex-

panded form of the orthography), pron (phonetic tran-

scription of some detail), pause (pause durations), de-

comp (compound decomposition), orig (information

about the origin of the pronunciation: dictionary, auto-

matic compound, CART tree etc.), and SSML (output

SSML for TTS control). A slot for markup is being im-

plemented, holding information retrieved from the orig-

inal input document, for example structural information

such as headings (<h1>, <h2> etc.), list elements

(), page numbers (<pagenum>), and print style in-

formation such as emphasis (and , typi-

cally realised as italics and bold face).

Information sources

Several resources are used by the Sardin modules, most

of them language dependent. The pronunciation diction-

aries constitute a significant resource with information

such as phonetic pronunciation, part-of-speech tag, mor-

phological information, and language linked to the

orthography. Another example is the list of abbrevia-

tions, which contain five fields: alternative orthogra-

phies; alternative expansions; expansion rules for abbre-

viations that can take different expansions; a flag show-

ing if the abbreviation can occur in sentence final posi-

tion; and a flag showing if the abbreviation is case sensi-

tive or not. Other information resources are lists of acro-

nyms, compound parts with their corresponding pronun-

ciations (used for decomposing compounds and creating

pronunciations for them), and clusters of vowels and

consonants that are accepted in the language in question

(for checking if an orthographic string is pronounceable).

Finally, there are a several sets of trigger words, for ex-

ample words signalling that a number expression to the

right or the word is a range (e.g., “chapter” or “be-

tween”), or a Roman numeral (e.g. “part”).

Data ingestion

Reading/unpacking

Sardin takes an annotated (XML/EPUB3) or a plain text

as input. The document is parsed and the text content and

information about the *ML markup sent to the next mod-

ule. At this stage, we do not make any changes in the text

(e.g., normalising spaces or hyphens), since we must be

able to present the text exactly as it appears in the input

document after enriching it with for example SSML tags.

Chunking

The text is then chunked into manageable sizes, in its

current form into sentences. To avoid incorrect sentence

splits at periods belonging to abbreviation, a temporary

abbreviation markup is done before the splitting. Briefly

described, the text is first split at major delimiters and

then over-generated splittings are removed, for example

at name initials or before said phrases (“Give it to me! he

shouted.”).

Tokenisation

Each sentence is then sent to the tokeniser. Again, abbre-

viations need special treatment, and the first step is to

unify them as one single token along with their belonging

periods. Next the text is split at spaces and delimiters,

such as commas, quotes and brackets. There is a range of

rules, for example splitting at hyphens between digits

(but not between letters) and merging numbers with

thousand separators (space in Swedish, usually comma

in English).

Analyses and enrichment

The linguistic analyses include part-of-speech tagging,

and text normalisation classification and expansion,

Part-of-speech tagging

Each sentence is then sent to the part-of-speech tagger,

which is a statistical tagger based on unigram, bigram

and trigram probabilities, and complemented with rules

where statistics are known to fail.

Text normalisation, classification

The analysis/markup module assigns each token to a

class, in line with Sproat et al., 2001. Table 1 lists the

classes in the order their rules are applied and gives ex-

amples of tokens that belong to each class, the expected

expansion (which is performed in the following expan-

sion module) and a translation of the expansion to

English for the reader’s convenience. References are

classified first to save time, since otherwise some of the

following classifications would apply on parts of the ref-

erences. Currently, all classifications are rule-based.

Note that the class set is not fixed: classes can be added

and used by the succeeding processes.

Text normalisation, expansion

At the time of writing, Sardin contains four expansion

modules: abbreviations, characters, numbers and refer-

ences. As an example of abbreviation processing,

“sek.” or “sek” can be expanded to “sekund” (Eng. sec-

ond) or “sekunder” (Eng. seconds) depending on the

digit to the left of the abbreviation, but in sentence-final

position, case sensitive “SEK” denotes the currency code

for Swedish crown.

Characters (e.g. daggers, hyphens and at-signs) all have

their own expansion rule sets. Hyphens, for example, are

expanded to “till” (to) if it belongs to the Interval class,

to itself if it belongs to the Date class (and not to Inter-

val), to “streck” (dash) if it occurs between digits that

aren’t part of an interval, and to pause if no other rule

applies. The numeral expansion module expands nu-

merals to cardinals, ordinals, or to single digits. If they

belong to the Year class, they are expanded as such, and

Roman numerals are converted into Arabic. Finally, the

reference expansion takes care of law references. This is

a complicated procedure, since the references need to be

parsed to chunk the numbers with the correct unit (chap-

ter, section, part etc.). For instance, “12 kap. 19 §” ex-

pands straightforwardly to “tolfte kapitlet nittonde par-

agrafen” (twelfth chapter nineteenth section), but more

complex structures are error prone and difficult to read

out even for a human. “12a-13b kap.” could be expanded

to “twelfth a to thirteenth b chapter”, which is hard to

understand. Instead all law references are converted into

a unit:numeral format: “kapitel tolv a till tretton b”

(chapter twelve a to thirteen b).

Pronunciation

In the Pronunciation module, each (potentially ex-

panded) token receives its pronunciation in the following

manner: First, the domains of electronic addresses are

given their pronunciations (for example, ‘se’ marked as

Email or URL is assigned a spelled pronunciation); then

acronyms are given their pronunciation from a dictionary

or assigned an automatic (spelled out) pronunciation.

Next, a dictionary lookup takes place, fetching pre-tran-

scribed pronunciations and other information of the

words. The lookup function uses the part-of-speech in-

formation to disambiguate homographs such as record

(noun or verb). If the word is not found in any dictionary,

an affix check takes place, checking if the word is an in-

flected known word (e.g., “record-s”) in which case the

pronunciation of the known word is modified accord-

ingly, then used. Next comes a compound check, where

a compound decomposer checks if the word is built up

by known compound parts. If so, automatic methods for

compound pronunciation are used. The pronunciations

of the known words are concatenated, and the stress pat-

tern changed according to language dependent com-

pound stress rules. Finally, if none of the above methods

could be used, the word is checked for its pronounceabil-

ity. If the word is made up of consonants only, or if it

contains graphemic clusters that are not part of Swedish

orthotactics, they are spelled out. If it can be pronounced,

they are sent to a G2P converter, which uses a CART

(classification and regression) tree to produce an auto-

matic pronunciation.

Next, the Pause and Prosody module assigns pauses of

different lengths according to their TN markup and/or or-

thography, for example at certain dashes or hyphens, mi-

nor and major delimiters. There is also the embryo of an

emphasis assignment process – a simple rule that assigns

emphasis to tokens that were marked with or

 (if surrounded by unmarked tokens). Depend-

ing on the capabilities of prosody control in the synthe-

siser, this feature may or may not be realised in the out-

put speech stream.

Output and packaging

In the final step, the output of the system is generated.

The process is flexible, and the output can be produced

in a variety of formats and packaging. The internal pho-

netic symbols used by Sardin are converted into the de-

sired target format, for example IPA or SAMPA, using a

symbol conversion table and a handful of rules, enabling

the preparation of correct input to the subsequent speech

generation. It is also possible to produce SSML output,

and to choose which features to include based on what

the TTS is able to handle. Knowing your TTS voice and

the mistakes it makes is essential to support it with ap-

propriate guidance, and to avoid foisting it with unnec-

essary information. The following choices are currently

available: <phoneme> (pronunciations): all tokens;

OOV tokens, acronyms; name initials; email addresses;

URLs; filenames; <sub> (substitutions): abbreviations;

numerals; dates; time expressions; years; currencies;

decimals; phone numbers; ordinals; intervals; fractions;

<break> (pauses): all pauses; and Other (mixed SSML

tags): law references; page references; hyphens; interval

hyphens. The original document is then rebuilt with its

original markup and the SSML markup of your choice.

Alternatively, the output can be produced sentence for

sentence, for example in some format that is used for

training and testing a TTS engine.

1 https://www.sprakbanken.speech.kth.se/software/sar-

din/

Quality assurance

Sardin is a full system handling the entire process from

XML parsing to SSML insertions. The analysis module

(TN) can be evaluated with methods such as those used

by Flint et al. (2017), Reichel & Pfitzinger (2006) and

Tyagi et al. (2021), and the automatic G2P module can

be compared to other G2P systems. However, there is no

TN test set for Swedish to our knowledge, and the Eng-

lish version of Sardin is not sufficiently elaborated to

warrant testing. On the other hand, the test-driven devel-

opment of Sardin ensures that the system is suitable for

its primary purpose, and the fact that Sardin has been

used in real-world production of synthetic speech for

more than a decade also speaks of its capabilities.

Conclusion and future work

The aim of this paper is to present the basics of Sardin in

light of the field of speech-oriented text processing, as

part of its release as publicly available free and open soft-

ware1. The refactoring and open sourcing of version 1.0

did not include any modernisation or improvement of

text processing methods or of the capacity to handle dif-

ferent types of text, but it did lead to efficiency gains and

a system that is considerably easier to adapt and extend.

Concerning the usefulness of Sardin, we know that data-

driven methods for text processing create unacceptable

errors, and researchers working with these methods com-

monly add rule-based pre- and/or post-processing both

for text-to-speech (e.g. Reichel & Pfitzinger, 2006; Tyagi

et al., 2021) and for speech-to-text (Tran & Bui, 2021).

So there is still a need for preparing text before speech

generation for production purposes, which is the current

main use of Sardin: to unpack, process, enrich (according

to what the speech generation system can handle), and

rebuild Daisy XML, EPUB or text files. A key strength

of Sardin is the ability to add information slots and re-

sources for specific purposes – to allow the use of what-

ever information is available: information about print

style, domain, inter alia. But with a little adaptation, Sar-

din can be used for other purposes, for example: for text

processing of STT/ASR results, for sentence

Class Input example Swedish expansion Translation

Reference 3 kap. 2-3 st. 4§ kapitel tre stycke två till tre paragraf fyra Chapter three part two to three section

four

Abbreviation En s. k. elefant. En så kallad elefant. A so called elephant.

Initials P.J. Harvey P J Harvey P J Harvey

Date 1/3-1951 Första i tredje nitton-hundra-femtio-ett First in third nineteen hundred fifty-one

Time Kl. 19.15 Klockan nitton och femton Clock nineteen and fifteen

Email p.j@harvey.com P punkt J snabel-a harvey punkt com P dot J at harvey dot com

URL www.kth.se V V V punkt K T H punkt S E W W W dot K T H dot S E

Filename C:/myfile.txt C kolon snedstreck myfile punkt T X T C colon slash myfile dot T X T

Roman number Sidan XII sidan tolv page twelve

Acronym KTH K T H K T H

Decimal 3,14 Tre komma fjorton Three comma fourteen

Phone number 08-12 12 12 Noll åtta streck tolv tolv tolv Oh eight dash twelve twelve twelve

Ordinal 31 mars Trettio-första mars Thirty-first March

Year Sproat (1996) Sproat (nitton-hundra-nittio-sex) Sproat (nineteen hundred ninety-six)

Interval Kapitel 5-8 Kapitel fem till åtta Chapter five to eight

Currency £5,80 Fem pund och åttio cent Five pounds and eighty cents

Table 1. Examples of classes and expansions.

segmentation for synchronisation of text and speech,

word tokenisation for frequency calculations, and pro-

nunciation generation for user lexicons of specific TTS

voices. Perhaps most importantly, the system can be used

to create test and training data for TTS and STT/ASR in

a repeatable and transparent manner, which would bene-

fit the ML world. We could for example set up a config-

uration that can go from the original texts contained in

LJ Speech to (a) manuscripts for reading aloud and (b)

test and training materials (the current LJ Speech distri-

bution). Among other things, this would make it a lot

easier to retrain LJ Speech-based implementations on

new data – something can be a struggle when LJ Speech

dependencies are built in but undocumented. A clear

drawback is that Sardin is not language independent.

Adapting the system to a new language requires several

steps, including the creation of new lists of abbrevia-

tions, acronyms and pronunciations, language-dependent

part-of-speech tagging, adaptation of expansion rules,

G2P etc.

In next steps, we will continue with research and evi-

dence-based development of speech-oriented text pro-

cessing, including fine-tuning of existing modules (e.g.

year detection), replacement of some processes with

more modern techniques (e.g., G2P and part-of-speech

tagger), and introduction of new functions (e.g. data-

driven text classification). We hope that the Swedish in-

terpretation of the Directive on Copyright in the Digital

Single Market (EU, 2019b) will give us better access to

sufficient amounts of training data for the text domains

we usually deal with: university text books and news, so

we can train models for additional models without vio-

lating the copyright law. We can then use methods such

as those described in Sproat & Jaitly (2017), creating a

normalised corpus with the mostly rule-based version of

Sardin today to use as reference when testing modified

Sardin versions or external systems.

Acknowledgements

This work is funded partly by the Vinnova project Deep

learning-based speech synthesis for reading aloud of

lengthy and information rich texts in Swedish

(VINNOVA2018-02427), and partly by the Swedish

Agency for Accessible Media (MTM). The results will

be made more widely accessible through the Swedish

Research Council funded national infrastructure

Språkbanken Tal (VR2017-00626).

References

Ebden, P., & Sproat, R. (2014). The Kestrel TTS text

normalization system. Natural Language Engineering,

21(3), 333–353.

https://doi.org/10.1017/S1351324914000175

Ericsson, C., Klein, J., Sjölander, K., & Sönnebo, L. (2007).

Filibuster – a new Swedish text-to-speech system.

Proceedings of Fonetik 2007, 50, 33–36. KTH-TMH.

EU. (2019a). On the accessibility requirements for products

and services (Directive No. 2019/882; p. 114). European

Parliament and the Council of the European Union.

https://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32019L0882&from

=EN

EU. (2019b). Directive (EU) 2019/790 of the European

Parliament and of the Council of 17 April 2019 on

copyright and related rights in the Digital Single Market

and amending Directives 96/9/EC and 2001/29/EC.

file:///C:/Users/christina.tannander@mtm.se/Zotero/stora

ge/EEJJ4UVD/DIRECTIVE%20%20(EU)%20%202019

%20%20790%20%20OF%20%20THE%20%20EUROP

EAN%20%20PA.pdf

Flint, E., Ford, E., Thomas, O., Caines, A., & Buttery, P.

(2017). A text normalisation system for non-standard

English words. Proc. of the 3rd Workshop on Noisy

User-Generated Text, 107–115.

https://doi.org/10.18653/v1/W17-4414

Garrish, M., & Cramer, D. (Eds.). (2019). EPUB 3.2 final

community group specification (W3C Community Group

Specification) [Specification]. W3C.

https://www.w3.org/publishing/epub3/epub-spec.html

Ito, K., & Johnson, L. (2017). The LJ Speech dataset.

https://keithito.com/LJ-Speech-Dataset/

Perquin, A., Cooper, E., & Yamagishi, J. (2020). Grapheme

or phoneme? An analysis of Tacotron’s embedded

representations (ArXiv 2010.10694).

http://arxiv.org/abs/2010.10694

Reichel, U. D., & Pfitzinger, H. R. (2006). Text preprocessing

for speech synthesis. Proc. of the TC-STAR Workshop

on Speech-to-Speech Translation, 207–212.

Sjölander, K., Tånnander, C., & Sönnebo, L. (2008). Recent

advancements in the Filibuster text-to-speech system.

Proc. of SLTC 2008.

Specifications for the digital talking book (Specification

Z39.86-2005 (R2012)). (2005). The DAISY Consortium.

https://daisy.org/activities/standards/daisy/daisy-3/z39-

86-2005-r2012-specifications-for-the-digital-talking-

book/

Sproat, R., Black, A. W., Chen, S., Kumar, S., Ostendorf, M.,

& Richards, C. (2001). Normalization of non-standard

words. Computer Speech and Language, 15, 287–333.

https://doi.org/10.1006/csla.2001.0169

Sproat, R., & Jaitly, N. (2017). RNN approaches to text

normalization: A challenge

(https://arxiv.org/abs/1611.00068; ArXiv 1611.00068).

arXiv.

Tan, X., Qin, T., Soong, F., & Liu, T.-Y. (2021). A survey on

neural speech synthesis. Preprint ArXiv:2106.15561 [Cs,

Eess], 63.

Tånnander, C. (2018). Speech synthesis and evaluation at

MTM. Proc. of Fonetik 2018, 75–80.

Tihelka, D., Matoušek, J., & Tihelková, A. (2021). How much

end-to-end is Tacotron 2 end-to-end TTS system? In K.

Ekštein, F. Pártl, & M. Konopík (Eds.), Procs. Of TSD

2021 (pp. 511–522). Springer International Publishing.

https://doi.org/10.1007/978-3-030-83527-9_44

Tran, O. T., & Bui, V. T. (2021). Neural text normalization in

speech-to-text systems with rich features. Applied

Artificial Intelligence, 35(3), 193–205.

https://doi.org/10.1080/08839514.2020.1842108

Tyagi, S., Bonafonte, A., Lorenzo-Trueba, J., & Latorre, J.

(2021). Proteno: Text normalization with limited data for

fast deployment in text to speech systems. Proc. of

NAACL 2021, 72–79.

https://doi.org/10.18653/v1/2021.naacl-industry.10

W3C. (2010). Speech Synthesis Markup Language (SSML)

Version 1.1 (W3C Recommendations) [Specification].

W3C; W3C. https://www.w3.org/TR/speech-synthesis11/

Watts, O., Eje Henter, G., Fong, J., & Valentini-Botinhao, C.

(2019). Where do the improvements come from in

sequence-to-sequence neural TTS? Procs. of SSW 10),

217–222. https://doi.org/10.21437/SSW.2019-39

